Рис. 320. Устройство ртутного выпрямителя
ртути. Появляющиеся при этом положительные ионы способствуют увеличению эмиссии с катода, так что ток через газотрон может быть значительно больше, чем через кенотрон.
Наконец, в тех случаях, когда требуется выпрямить токи очень больших мощностей (до 200 А при напряжении до 50 кВ), в качестве вентилей применяют так называемые ртутные выпрямители. Они представляют собой большие стеклянные или металлические колбы (рис. 320), в которых происходит дуговой разряд в парах ртути между катодом
408
1 (жидкая ртуть) и графитовыми электродами 2 и 3, впаянными в боковые отростки. Дополнительные электроды 4 и 5 включены в устройство, обеспечивающее работу выпрямителя при малых нагрузках. Ртуть в дополнительном отростке 6 служит для зажигания дуги. Дуга в колбе может гореть только тогда, когда жидкая ртуть является катодом. При этом на поверхности ртути образуется ярко светящееся пятно, представляющее собой нагретый участок ртути. С этого участка происходит усиленное испарение ртути, пары которой при высоком давлении заполняют всю колбу. Это же пятно является и источником электронов, которые движутся под действием электрического поля к тому из электродов 2 и 3, который в данное время положителен по отношению к ртути и другому аноду.
Такой выпрямитель включается по схеме двухполупериодного выпрямления, и дуга горит в течение одного полупериода между катодом 1 и анодом 2, а в течение другого — между катодом 1 и анодом 3. При этом в нагрузке ток идет все время в одном и том же направлении. Такими ртутными выпрямителями оборудованы, в частности, почти все подстанции, питающие электрические железные дороги, трамваи и троллейбусы.
Наряду с описанными электронными или газоразрядными выпрямителями в последнее время получили более широкое
Рис. 321. Условное обозначение полупроводниковых электрических вентилей далее 


Используются технологии uCoz